
The Edge-Set Encoding Revisited: On the Bias
of a Direct Representation for Trees

Carsten Tzschoppe2, Franz Rothlauf1, and Hans-Josef Pesch2

1 Department of Information Systems 1
University of Mannheim

68131 Mannheim/Germany
rothlauf@uni-mannheim.de

2 Department of Applied Mathematics
University of Bayreuth

95440 Bayreuth/Germany
carsten.tzschoppe@gmx.de,hans-josef.pesch@uni-bayreuth.de

Abstract. The edge-set encoding is a direct tree representation which
directly represents trees as sets of edges. There are two variants of the
edge-set encoding: the edge-set encoding without heuristics, and the
edge-set encoding with heuristics. An investigation into the bias of the
edge-set encoding shows that the crossover operator of the edge-set en-
coding without heuristics is unbiased, that means it does not favor par-
ticular types of trees. In contrast, the crossover operator with heuristics is
biased towards the simple minimum spanning tree (MST) and generates
more likely trees that are MST-like. As a result, the performance of the
edge-set encoding without heuristics does not depend on the structure
of the optimal solution. Using the heuristic crossover operator results
only in high genetic algorithm (GA) performance if the optimal solution
of the problem is slightly different from the simple MST. However, if
the optimal solution is not very similar to the simple MST a GA using
the heuristic crossover operator fails and is not able to find the optimal
solution. Therefore, it is recommended that the edge-set encoding with
heuristics should only be used if it is known a priori that the optimal
solution is very similar to the simple MST. If this is not known a priori,
other unbiased search operators and representations should be used.

1 Introduction

A spanning tree of an undirected graph G is a subgraph that connects all vertices
of G and contains no cycles. Relevant constraint minimum spanning tree (MST)
problems are, for example, the optimal communication spanning tree (OCST)
problem, or the degree-constrained minimum spanning tree problem [1,2,3]. The
NP-hard OCST problem [4] seeks a spanning tree that connects all given nodes
and satisfies their communication requirements for a minimum total cost. Ge-
netic algorithms (GAs) have been applied with success to many constrained MST
problems. As it is well known that the proper design of operators and represen-
tations is crucial for GA performance [5], a large variety of tree representations

K. Deb et al. (Eds.): GECCO 2004, LNCS 3103, pp. 258–270, 2004.
c© Springer-Verlag Berlin Heidelberg 2004

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [595 842] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: Warnen und weiterEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

The Edge-Set Encoding Revisited 259

like NetKeys [6], the link-and-node-biased encoding [7], or Prüfer numbers [8,
9] have been developed. Recently, [3] proposed a new direct representation of
trees, the edge-set encoding, which has successfully been used for the degree-
constrained MST problem, and has outperformed other representations such as
Prüfer numbers or NetKeys.

The purpose of this paper is to investigate the properties of the edge-set en-
coding. The paper focuses on the crossover operators, heuristic and non-heuristic
KruskalRST*, used for the edge-set encoding and examines whether they are bi-
ased that means they overrepresent specific tree structures. Furthermore, the
performance of the crossover operators is compared for OCST problems. The
results show that the heuristic crossover operator is strongly biased towards the
simple MST, whereas the non-heuristic crossover operator shows no bias. Conse-
quently, GA performance increases when using the heuristic crossover operator
for OCST problems where the optimal solution is only slightly different from
the simple MST. In contrast, when applying the heuristic crossover operator to
OCST problems where the optimal solution is not similar to the simple MST,
GAs using the edge-set encoding fail.

The paper is structured as follows. The following section gives a short def-
inition of the OCST problem and describes the functionality of the edge-set
encoding with and without heuristics. Section 3 investigates the bias of the two
variants of the crossover operator of the edge-set encoding. After investigating
the bias, section 4 examines the influence of the crossover operator with and
without heuristics on the performance of GAs when solving the OCST problem.
The paper ends with concluding remarks.

2 Setting up the Stage: The OCST Problem and the
Edge-Set Encoding

2.1 The OCST Problem

The optimal communication spanning tree problem (also known as minimum
spanning tree problem or simple network design problem) was first introduced
in [4]:

Definition 1 (Optimal Communication Spanning Tree Problem). Let
G = (V, E) be a complete undirected graph. n = |V | denotes the number of nodes
in the graph and m = |E| denotes the number of edges in the graph. To every
pair of nodes (i, j) a non-negative weight wij and a non-negative communication
requirement rij is associated. The communication cost c(T) of a spanning tree
T is defined as

c(T) =
∑

i,j∈V, i<j

rij · w(pT
i,j),

where w(pT
i,j) denotes the weight of the unique path from node i to node j in the

spanning tree T . The OCST Problem seeks the spanning tree with minimal costs
among all other spanning trees.

260 C. Tzschoppe, F. Rothlauf, and H.-J. Pesch

Definition 2 (Minimum Spanning Tree Problem). The OCST problem
becomes the minimum spanning tree (MST) problem if there are no communica-
tion requirements rij and c(T) depends only on the weights wij. Then, T is the
simple minimum spanning tree if c(T) ≤ c(T ′) for all other spanning trees T ′,
where c(T) =

∑
(i,j)∈T wij.

The similarity between two spanning trees Ti and Tj can be measured using the
distance dij ∈ {0, 1, . . . , n− 1} as dij = 1

2

∑
u,v∈V, u<v |liuv − ljuv|, where liuv is 1

if a link from u to v exists in Ti and 0 if it does not exist in Ti.
Like many other constrained spanning tree problems, the OCST problem

is NP-hard [10]. Even more, it was later shown that the OCST problem is
MAX SNP-hard [11], that means it cannot be solved using a polynomial-time
approximation-scheme, unless P = NP. Nevertheless, the OCST problem has
been studied extensively in the literature and many researchers have tried to
develop efficient approximation algorithms. The current best approximation al-
gorithm for the general OCST problem approximates the optimal solution with
c(T) = O(log n log log n) · c(G) [12], where c(G) is the cost of the network when
using G. c(G) is a lower bound for the cost of a spanning tree c(T) as the weight
of the unique path between node i and j in a spanning tree T is greater or equal
in comparison to the weight of the path with minimal weight connecting the
nodes i and j in G. As there are no efficient approximation algorithms, many
researchers used GAs for solving the OCST problem [13,14,15,16,5,17].

It was shown in [18] that the optimal solution of a OCST problem is similar to
the simple MST, that means the average number of different edges between the
OCST and the simple MST is significantly lower than the average number of dif-
ferent edges between a randomly generated tree and the simple MST. Therefore,
as the optimal solution of an OCST problem is biased towards the simple MST,
representations as well as operators that favor or overrepresent trees, which are
similar to the MST are expected to solve the OCST problem more efficiently.

2.2 The Edge-Set Encoding without Heuristics

The edge-set encoding [3] is a direct tree representation that means it directly
represents trees as sets of edges. In the following paragraphs we describe how
initial populations are created and explain the functionality of the crossover and
mutation operator of the edge-set encoding without heuristics.

Initialization: In order to create feasible solutions for the initial population, the
edge-set encoding uses the Kruskal random spanning tree (RST) algorithm, a
slightly modified version of the algorithm from Kruskal. In contrast to Kruskals’
algorithm, KruskalRST chooses edges (i, j) not according to their weight wij

but randomly. [3] have shown that this algorithm for creating random spanning
trees, KruskalRST, has a small bias towards star-like trees.

procedure KruskalRST(V, E):
T ← ∅, A← E;

The Edge-Set Encoding Revisited 261

while |T | < |V | − 1 do
choose an edge {(u, v)} ∈ A at random;
A← A− {(u, v)};
if u and v are not yet connected in T then

T ← T ∪ {(u, v)};
return T .

[3] also presented two other RST algorithms (PrimRST, RandWalkRST) for gen-
erating the initial population, but RandWalkRST has an unlimited worst-case
running time, and PrimRST has a stronger bias in comparison to KruskalRST.

Recombination: The functionality of the crossover operator is straightforward.
To obtain an offspring Toff from two parental trees T1 and T2, KruskalRST
is applied to the graph Gcr = (V, T1 ∪ T2). Therefore, the resulting crossover
operator has high heritability as in the absence of constraints, only parental
edges are used to create the offspring. Crossover becomes more complicated for
constraint MST problems as it is possible that the RST algorithm can create no
feasible tree from Gcr = (V, T1 ∪ T2). Then, additional edges have to be chosen
randomly to complete an offspring. Based on KruskalRST, [3] distinguished two
different recombination operators: The variant previously described is denoted
KruskalRST crossover. The second variant is denoted KruskalRST* crossover.
When using this variant, edges that are common to both parents T1 and T2 are
included in the offspring Toff before KruskalRST crossover is applied. Results
from [3] indicated a better performance of the KruskalRST* crossover for the
degree-constraint MST problem.

Mutation: The mutation operator randomly replaces one edge in the spanning
tree. This replacement can be implemented in two ways. The first variant of the
mutation operator chooses randomly one edge from E \ T and includes it in T .
This creates a cycle. Then, the operator randomly chooses one edge from the
cycle and removes it from T (”insertion before deletion”). The second variant first
randomly deletes one edge from T and connects then the two disjoint connected
components using a random edge from E \ T (”deletion before insertion”).

2.3 The Edge-Set Encoding with Heuristics

The following paragraphs describe how heuristics that rely on the weights wij

can be included in the edge-set encoding.

Heuristic Initialization: To favor low-weighted edges when generating the ini-
tial population, the algorithm KruskalRST starts with sorting all edges in the
underlying graph according to their weights wij in ascending order. The first
spanning tree is created by choosing the first edges in the ordered list. As these
are the edges with lowest weights, the first generated spanning tree is a simple
MST. Then, the k edges with lowest weights are permuted randomly and more
spanning trees are created again using the first edges in the list. Therefore, the

262 C. Tzschoppe, F. Rothlauf, and H.-J. Pesch

heuristic initialization results in a strong bias of the initial population towards
the simple MST. With increasing k the bias of the randomly created trees to-
wards the simple MST is reduced. The number of edges, which are permuted
increases according to

k = α(i− 1)n/N,

where N denotes the population size, i is the number of the tree that is actually
generated (i = 1 . . . N) and α is a parameter that controls the strength of the
heuristic bias.

Heuristic Recombination: The heuristic recombination operator is a modified
version of KruskalRST* crossover. Firstly, the operator transfers all edges T1∩T2
that exist in both parents to the offspring. Then, the remaining edges are chosen
randomly from E′ = (T1 ∪ T2) \ (T1 ∩ T2) using a tournament with replacement
of size two. If the underlying optimization problem is constrained, it is possible
that the offspring has to be completed using edges not in E′.

Heuristic Mutation: The heuristic mutation operator is based on mutation by
”insertion before deletion”. In a pre-processing step, all edges in the underlying
graph are sorted according to their weights in ascending order. Doing this, a
rank is assigned to every edge. To favor low-weighted edges, edges are not chosen
randomly but according to their ranks

R = �|N (0, βn)|�mod (m + 1),

where N (0, βn) is the normal distribution with mean 0 and standard deviation
βn. β is a parameter that controls the bias towards low-weighted edges.

3 Investigating the Bias of the Edge-Set Encoding

A representation is unbiased if all possible solutions of the search space are rep-
resented uniformly [5]. Consequently, a search operator is unbiased if it does
not overrepresent specific solutions, and the application of the search operator
alone does not modify the statistical properties of a population. An unbiased
search operator allows a uniform, non-directed search through the search space.
A biased representation resp. operator should only be used if it is known a priori
that the optimal solution of the underlying optimization problem is similar to the
overrepresented solutions [19]. In contrast, unbiased representations resp. opera-
tors should be used if no a priori problem-specific knowledge is available. Then,
the probability of finding the optimal solution is independent of the structure of
the optimal solution.

To investigate if the crossover operator of the edge-set encoding with or
without heuristics leads to an overrepresentation of MST-like individuals, we
randomly generate an initial population with 500 individuals and apply the
crossover operator iteratively. As no selection operator is used, no selection pres-
sure exists that pushes the population to high-quality solutions. The crossover

The Edge-Set Encoding Revisited 263

operator is unbiased if the statistical properties of the population do not change
by applying crossover alone. In our experiments we measure in each generation
the average distance dmst−pop = 1/N

∑n
i=1 di,MST of the individuals Ti in the

population to the simple MST. If dmst−pop decreases, the crossover operator is
biased towards the simple MST. In contrast, if dmst−pop remains constant, the
crossover operator is unbiased and no solutions are overrepresented.

To obtain meaningful results, we performed this experiment on 50 randomly
generated ten and 16 node problem instances with random, resp. Euclidean
weights wij . For every problem instance we performed 50 runs with different,
randomly chosen initial populations. In each run, the crossover operator is ap-
plied 100 times (generations). The communication requirements of the problem
instances with random and Euclidean weights wij are uniformly distributed real
values from [0, 100]. The random distance weights wij are real values and uni-
formly distributed from [0, 100]. When using Euclidean weights, all nodes are
randomly placed on a 1000 × 1000 grid and the Euclidean distances between
the nodes are taken as weights. As the weights wij are randomly created and
wij 	= wkl, ∀i 	= l, j 	= l, there is an unique optimum MST for every problem
instance and distances to the simple MST are unique.
Figure 1 shows the mean and the standard deviation of the distance dmst−pop be-
tween the individuals in a population towards the simple MST over the number
of generations for ten (top) and 16 (bottom) problem instances. The plots com-
pare the non-heuristic KruskalRST* crossover with the heuristic KruskalRST*
crossover operator (no selection is used). The results reveal that the crossover
operator without heuristics is unbiased and does not modify the statistical prop-
erties of the population (dmst−pop remains constant over the number of gener-
ations). In contrast, the crossover operator with heuristics shows a strong bias
towards the simple MST and the population converges quickly to the simple
MST.

4 The Performance of the Edge-Set Encoding for the
OCST Problem

4.1 Finding Optimal Solutions for OCST Problems

To investigate how the performance of the edge-set encoding depends on the
structure of the optimal solution, an optimal or near-optimal solution must be
determined. The following experiments, which should identify optimal or near-
optimal solutions for OCST problems, are similar to the ones described in [18].
They examined the OCST problem and showed that optimal solutions of OCST
problems are biased towards the simple MST.

To determine the optimal (or near optimal) solution we apply a GA niter

times to an OCST problem using a population size of N0. T best
0 denotes the best

solution of cost c(T best
0) that is found during the niter runs. In a next round we

double the population size and again apply a GA niter times with a population
size of N1 = 2 · N0. T best

1 denotes the best solution with cost c(T best
1) that

264 C. Tzschoppe, F. Rothlauf, and H.-J. Pesch

0
1
2
3
4
5
6
7
8
9

0 20 40 60 80 100

d m
st

−
po

p

generations

KruskalRST* crossover
heuristic KruskalRST* crossover

(a) 10 node and random distances

0
1
2
3
4
5
6
7
8
9

0 20 40 60 80 100

d m
st

−
po

p

generations

KruskalRST* crossover
heuristic KruskalRST* crossover

(b) 10 node and Euclidean distances

0
2
4
6
8

10
12
14

0 20 40 60 80 100

d m
st

−
po

p

generations

KruskalRST* crossover
heuristic KruskalRST* crossover

(c) 16 node and random distances

0
2
4
6
8

10
12
14

0 20 40 60 80 100

d m
st

−
po

p

generations

KruskalRST* crossover
heuristic KruskalRST* crossover

(d) 16 node and Euclidean distances

Fig. 1. The plots show the mean and the standard deviation of the distance dmst−pop

between a population of 500 randomly generated individuals towards the simple MST
over the number of generations when using crossover only (no selection pressure).
Results are presented for ten (top) and 16 (bottom) problem instances using either
random (left) or Euclidean (right) weights wij . The results show that the non-heuristic
KruskalRST* crossover is unbiased that means the average distance between the pop-
ulation and the simple MST remains constant. The crossover operator with heuristics
shows a strong bias towards the simple MST and the population converges to the
simple MST in a few generations.

can be found in the second round. We continue these iterations and double the
population size Ni = 2Ni−1 until c(T best

i) = c(T best
i−1). This means we stop if

the cost of the best solution T best
i found in round i equals the cost of the best

solution T best
i−1 found in round i − 1. We assume that the solutions found using

this approach are optimal or near-optimal.
Figure 2 presents the results of our experiments. We show the number of

problem instances over the distance dopt,MST between the best found solution
and the simple MST for randomly created ten (Fig. 2(a)) and 16 (Fig. 2(b)) node
OCST problem instances. We distinguish between random and Euclidean weights
wij . For every problem instance we randomly generated 200 OCST problem
instances. We used an initial population size N0 = 20 for the ten node problem
instances and N0 = 100 for the 16 node problem instances, niter = 20, a standard
GA with a NetKey representation [6], tournament selection without replacement

The Edge-Set Encoding Revisited 265

0

20

40

60

80

0 2 4 6 8

nu
m

be
r

of
 p

ro
bl

em
 in

st
an

ce
s

dopt,MST

random
Euclidean

(a) 10 node

0

20

40

60

0 2 4 6 8 10 12 14

nu
m

be
r

of
 p

ro
bl

em
 in

st
an

ce
s

dopt,MST

random
Euclidean

(b) 16 nodes

Fig. 2. We randomly generated 200 OCST problems and show the distribution of the
problem instances over the distance dopt,MST between the best found solution and the
simple MST when using either random or Euclidean distance weights for ten (left)
and 16 (right) node problems. The plots show that the optimal solutions for OCST
problems using random distance weights are stronger biased in comparison to using
Euclidean weights.

of size two, uniform crossover and no mutation. The results are similar to the
ones presented in [18] and show that the best found solution is strongly biased
towards the simple MST. Furthermore, OCST problems using random distance
weights show a stronger bias in comparison to OCST problems using Euclidean
weights.

4.2 Comparing Heuristic and Non-heuristic Crossover Operators

After determining optimal or near-optimal solutions as described in the previ-
ous paragraph we examine the performance of the edge-set encoding on these
200 problem instances. We use the same randomly generated problem instances
as in section 4.1 and investigate how the performance of the edge-set encoding
using different types of crossover operators depends on the distance dopt,MST be-
tween the optimal (or near-optimal) solution and the simple MST. For compar-
ing the performance of the two crossover operators, KruskalRST* and heuristic
KruskalRST*, we use a standard GA with no mutation and tournament selec-
tion without replacement of size two. The initial population is generated using
the non-heuristic KruskalRST (compare Sect. 2.2). Each run is stopped after
the population is fully converged or the number of generations exceeds 200. We
perform 100 runs for each of the 200 problem instances.

The population size N is chosen with respect to the performance of the
crossover operator without heuristics (KruskalRST*). The aim is to find the

266 C. Tzschoppe, F. Rothlauf, and H.-J. Pesch

optimal solution with a probability of about 50 %. Therefore, we choose for the
ten node problems a population size of N = 60 (random weights) resp. N = 100
(Euclidean weights) and for the 16 node problems a population size of N = 200
(random weights) resp. N = 450 (Euclidean weights).

0

20

40

60

80

100

0 1 2 3 4

op
tim

al
 s

ol
ut

io
ns

 (
in

 %
)

dopt,MST

KruskalRST*
heuristic KruskalRST*

(a) 10 node random

0

20

40

60

80

100

0 1 2 3 4 5 6 7
op

tim
al

 s
ol

ut
io

ns
 (

in
 %

)

dopt,MST

KruskalRST*
heuristic KruskalRST*

(b) 10 node Euclidean

0

2

4

6

8

10

12

14

0 1 2 3 4

ga
p

(in
 %

)

dopt,MST

KruskalRST*
heuristic KruskalRST*

(c) 10 node random

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6 7

ga
p

(in
 %

)

dopt,MST

KruskalRST*
heuristic KruskalRST*

(d) 10 node Euclidean

Fig. 3. The plots compare the performance of different crossover operators of the edge-
set encoding (KruskalRST* versus heuristic KruskalRST*) for randomly generated ten
node OCST problem instances. The plots 3(a) and 3(b) show the mean and standard
deviation of the percentage of optimal solutions that can be found over dopt,MST . The
plots 3(c) and 3(d) show the mean and standard deviation of the gap between the
cost of the best found solution and the cost of the optimal solution determined in
section 4.1. The results are averaged over 200 randomly created OCST problems using
either random (left) or Euclidean (right) weights. The plots show that the heuristic
KruskalRST* crossover outperforms the non-heuristic version only if the optimal so-
lution is very similar to the simple MST (dopt,MST ≈ 0). If the difference between
the optimal solution and the simple MST becomes greater the heuristic KruskalRST*
crossover results in low GA performance and the optimal solution cannot be found.
In contrast, when using the non-heuristic KruskalRST* crossover, GA performance
remains about constant with increasing dopt,MST .

The results of our experiments are presented in Figure 3 (ten nodes) and Fig-
ure 4 (16 nodes). We show results for random (left) and Euclidean (right) weights.

The Edge-Set Encoding Revisited 267

0

20

40

60

80

100

0 1 2 3 4 5 6

op
tim

al
 s

ol
ut

io
ns

 (
in

 %
)

dopt,MST

KruskalRST*
heuristic KruskalRST*

(a) 16 node random

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

op
tim

al
 s

ol
ut

io
ns

 (
in

 %
)

dopt,MST

KruskalRST*
heuristic KruskalRST*

(b) 16 node Euclidean

0

2

4

6

8

10

12

14

0 1 2 3 4 5 6

ga
p

(in
 %

)

dopt,MST

KruskalRST*
heuristic KruskalRST*

(c) 16 node random

0

5

10

15

20

1 2 3 4 5 6 7 8 9 10

ga
p

(in
 %

)

dopt,MST

KruskalRST*
heuristic KruskalRST*

(d) 16 node Euclidean

Fig. 4. The figures compare the performance of different crossover operators for ran-
domly generated 16 node OCST problem instances. The plots 4(a) and 4(b) show
the mean and standard deviation of the percentage of optimal solutions that can be
found over dopt,MST . The plots 4(c) and 4(d) show the mean and standard deviation
of the gap between the cost of the best found solution and the cost of the optimal
solution determined in section 4.1. The results are averaged over 200 randomly created
OCST problems using either random (left) or Euclidean (right) distance weights. The
plots show that the heuristic KruskalRST* crossover outperforms the non-heuristic
KruskalRST* crossover only if the optimal solution is very similar to the simple MST
(dopt,MST ≈ 0).

The top of Figure 3 and 4 shows the percentage of GA runs that correctly identify
the optimal solutions at the end of a run over the distance dopt,MST between the
optimal solution (compare section 4.1) and the simple MST. The bottom of the
figures show the gap, c(Tfound)−c(Topt)

c(Topt)
(in percent), between the cost of the best

found solution and the cost of the optimal solution that was identified in sec-
tion 4.1 over dopt,MST . The results reveal that the heuristic crossover operator,
heuristic KruskalRST*, always finds the optimal solution if the optimal solution
is the simple MST (dopt,MST = 0). However, with increasing dopt,MST GA per-
formance is significantly reduced and for dopt,MST ≥ 3 the optimal solution can
not be found any more. In contrast, the performance of the crossover operator

268 C. Tzschoppe, F. Rothlauf, and H.-J. Pesch

without heuristics decreases only slightly with larger dopt,MST and allows the
GA to correctly identify the optimal solution even for larger dopt,MST .

The direct comparison between the performance of the two crossover opera-
tors reveals that the heuristic crossover performs well only for problems where
the optimal solution is slightly different from the simple MST. Otherwise, GAs
using the edge-set encoding with heuristic crossover fail. These results are con-
firmed when examining the gap c(Tfound)−c(Topt)

c(Topt)
(bottom of Figure 3 and 4).

Heuristic crossover shows perfect performance if the optimal solution is the sim-
ple MST. However, with increasing dopt,MST the quality of the solutions strongly
decreases and the non-heuristic KruskalRST* outperforms the heuristic variant.

5 Summary and Conclusions

This work investigates two different crossover variants of the edge-set encoding,
heuristic KruskalRST* crossover versus KruskalRST* crossover, which were pro-
posed by [3]. Section 2 defines the optimal communication spanning tree (OCST)
problem and describes the functionality of the edge-set encoding. In section 3
an investigation into the bias of the crossover operators is performed. Based on
an analysis of optimal solutions for randomly generated instances of the OCST
problem, section 4.2 investigates how the performance of the crossover operators
of the edge-set encoding depends on the similarity between the optimal solution
of an OCST problem and the simple minimal spanning tree (MST).

The investigation into the bias of the crossover operators of the edge-set
encoding reveals that the heuristic KruskalRST* crossover is strongly biased to-
wards the simple MST. In contrast to the unbiased, non-heuristic KruskalRST*
that results in an uniform search through the search space, the population con-
verges quickly towards the simple MST if the heuristic KruskalRST* crossover
is used. Therefore, due to the strong bias towards the simple MST, GAs using
the edge-set encoding with the heuristic KruskalRST* crossover can easily solve
OCST problems if the optimal solution is the simple MST. However, with de-
creasing similarity between the optimal solution of an OCST problem and the
simple MST, the edge-set encoding with heuristics fails as heuristic search gets
stuck at the simple MST. In contrast, GAs using the edge-set encoding with the
unbiased KruskalRST* crossover operator show good performance for all differ-
ent OCST problems independently of the similarity between the optimal solution
and the MST. The results suggest that the edge-set encoding with the heuristic
KruskalRST* crossover operator is not appropriate for solving OCST problems.
This search operator can only be used successfully if the optimal solutions are
the simple MST, or slightly different variants of it.

The problems of the heuristic crossover operator of the edge-set encoding
emphasizes the difficulty of a proper design of representations and operators.
Especially the design of direct representations is difficult as in contrast to indi-
rect representations, the behavior of new, problem-specific search operators is
often unknown. The analysis of the edge-set encoding has shown that although
optimal solutions for the OCST problems are biased towards the simple MST

The Edge-Set Encoding Revisited 269

[18], direct representations resp. operators like the heuristic KruskalRST* that
use this problem-specific knowledge and are biased towards the simple MST, can
fail in solving most of the randomly created OCST problem instances. Therefore,
the authors recommend the use of unbiased representations if no problem-specific
knowledge is known a priori. Proper representations for tree problems are for ex-
ample non-heuristic versions of the edge-set encoding or NetKeys [6]. In the case
that biased representations resp. operators are used, it must be confirmed that
the bias of the search fits to the properties of the optimal solutions. Otherwise
failure is unavoidable.

References

1. Narula, S.C., Ho, C.A.: Degree-constrained minimum spanning trees. Computers
and Operations Research 7 (1980) 239–249

2. Fekete, S., Khuller, S., Klemmstein, M., Raghavachari, B., Young, N.: A network-
flow technique for finding low-weight bounded-degree spanning trees. Journal of
Algorithms 24 (1997) 310–324

3. Raidl, G.R., Julstrom, B.A.: Edge-sets: An effective evolutionary coding of span-
ning trees. IEEE Transactions on Evolutionary Computation 7 (2003) 225–239

4. Hu, T.C.: Optimum communication spanning trees. SIAM Journal on Computing
3 (1974) 188–195

5. Rothlauf, F.: Representations for Genetic and Evolutionary Algorithms. Number
104 in Studies on Fuzziness and Soft Computing. Springer, Berlin (2002) 1st edition
2002. 2nd printing 2003.

6. Rothlauf, F., Goldberg, D.E., Heinzl, A.: Network random keys – A tree net-
work representation scheme for genetic and evolutionary algorithms. Evolutionary
Computation 10 (2002) 75–97

7. Palmer, C.C., Kershenbaum, A.: Representing trees in genetic algorithms. In: Pro-
ceedings of the First IEEE Conference on Evolutionary Computation. Volume 1.,
Piscataway, NJ, IEEE Service Center (1994) 379–384

8. Prüfer, H.: Neuer Beweis eines Satzes über Permutationen. Archiv für Mathematik
und Physik 27 (1918) 742–744

9. Gottlieb, J., Julstrom, B.A., Raidl, G.R., Rothlauf, F.: Prüfer numbers: A poor
representation of spanning trees for evolutionary search. In Spector, L., Goodman,
E., Wu, A., Langdon, W.B., Voigt, H.M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S.,
Garzon, M., Burke, E., eds.: Proceedings of the Genetic and Evolutionary Compu-
tation Conference 2001, San Francisco, CA, Morgan Kaufmann Publishers (2001)
343–350

10. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman, New York (1979)

11. Papadimitriou, C.H., Yannakakis, M.: Optimization, approximation, and complex-
ity classes. J. Comput. System Sci. 43 (1991) 425–440

12. Charikar, M., Chekuri, C., Goel, A., Guha, S., Plotkin, S.: Approximating a fi-
nite metric by a small number of tree metrics. In: Proc. 39th IEEE Symp. on
Foundations of Computer Science. (1998) 111–125

13. Palmer, C.C.: An approach to a problem in network design using genetic algo-
rithms. unpublished PhD thesis, Polytechnic University, Troy, NY (1994)

270 C. Tzschoppe, F. Rothlauf, and H.-J. Pesch

14. Berry, L.T.M., Murtagh, B.A., McMahon, G.: Applications of a genetic-based
algorithm for optimal design of tree-structured communication networks. In: Pro-
ceedings of the Regional Teletraffic Engineering Conference of the International
Teletraffic Congress, Pretoria, South Africa (1995) 361–370

15. Li, Y., Bouchebaba, Y.: A new genetic algorithm for the optimal communication
spanning tree problem. In Fonlupt, C., Hao, J.K., Lutton, E., Ronald, E., Schoe-
nauer, M., eds.: Proceedings of Artificial Evolution: Fifth European Conference,
Berlin, Springer (1999) 162–173

16. Kim, J.R., Gen, M.: Genetic algorithm for solving bicriteria network topology
design problem. In Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Za-
lzala, A., Porto, W., eds.: Proceedings of the 1999 IEEE Congress on Evolutionary
Computation, IEEE Press (1999) 2272–2279

17. Chou, H., Premkumar, G., Chu, C.H.: Genetic algorithms for communications
network design - an empirical study of the factors that influence performance.
IEEE Transactions on Evolutionary Computation 5 (2001) 236–249

18. Rothlauf, F., Gerstacker, J., Heinzl, A.: On the optimal communication spanning
tree problem. Technical Report 15/2003, University of Mannheim (2003)

19. Rothlauf, F., Goldberg, D.E.: Redundant representations in evolutionary compu-
tation. Evolutionary Computation 11 (2003) 381–415

	Introduction
	Setting up the Stage: The OCST Problem and the Edge-Set Encoding
	The OCST Problem
	The Edge-Set Encoding without Heuristics
	The Edge-Set Encoding with Heuristics
	Investigating the Bias of the Edge-Set Encoding

	The Performance of the Edge-Set Encoding for the OCST Problem
	Finding Optimal Solutions for OCST Problems

	Comparing Heuristic and Non-heuristic Crossover Operators
	Summary and Conclusions

